Инструкция к расчету 72

1. Введение

В данной инструкции описывается интерфейс программы «Доп. расчет 72» и описываются ключевые моменты использования данного ПО.

Программа предназначена для анализа хроматограмм полученных при помощи ПО Хромос. Анализ хроматограмм происходит по методике СТО ТюменНИИгипрогаз 02-04-2009.

Для начала работы необходимо ознакомится с методикой СТО ТюменНИИгипрогаз 02-04-2009.

2. Установка программы

После запуска установочного файла достаточно следовать инструкциям мастера установки. Вид установочного окна приведен на рисунке 1. По окончанию установки на рабочем столе появится ярлык программы: «Доп Расчет 72».

В случаи если операционная система Windows выводит предупреждение об опасности при запуске установочной программы, необходимо найти в окне предупреждения надпись «подробнее» и нажать на нее, после чего появится кнопка «Выполнить в любом случае». После нажатия на данную кнопку установка пойдет в штатном режиме.

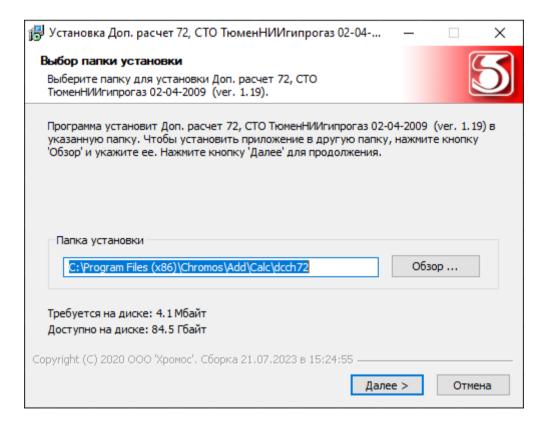


Рис 1. Окно установки программы **3. Внешний вид и элементы управления**

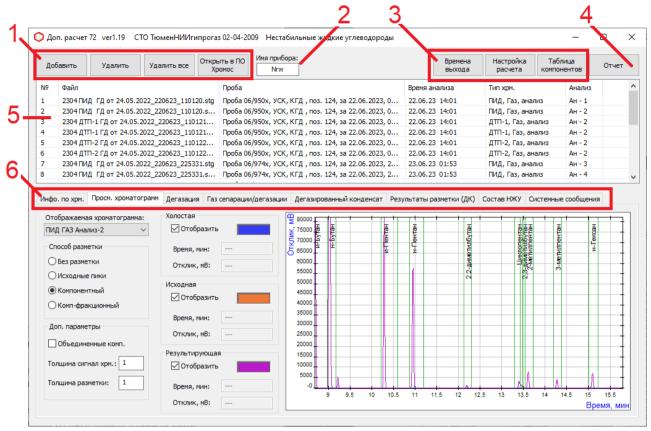


Рис 2. Внешний вид программы

На рисунке 2 изображен внешний вид основного окна программы. Основное окно программы имеет следующие элементы управления:

- Над кнопкой «Добавить» в заголовке окна программы отображен значок программы который является кнопкой и вызывает меню с дополнительными функциями, из него можно открыть окно информации «О программе»;
- 1 Блок кнопок для управления списком хроматограмм (Добавление, Удаление, открытие в ПО Хромос);
- 2 Поле ввода «**Имя прибора**» данные из этого поля будут отображаться в отчете формируемом программой;
- 3 Блок кнопок для управления параметрами программы;
- 4 Кнопка открытия окна для формирования отчетов и экспорта данных;
- 5 Список хроматограмм используемых для расчетов.
- 6 Набор вкладок предоставляющих пользователю возможность получить не только результирующую информацию расчета, но и увидеть исходные данные, часть промежуточных расчетов или иную дополнительную информацию.

3. Таблица компонентов

ľΘ	Компонент	Имя компонента	Группа	ЧАУ	Ткип, ℃	ММ, г/моль	Плотность, г	к-пид	к-дтп	Атест. знач, газ, м
L	Азот	Азот				28.014			0.980	
2	Диоксид углерода	Диоксид углерода				44.010			1.340	
	Кислород	Кислород				15.999			1.180	
1	Метан	Метан		1.00	-161.490	16.043	0.260	16.040	0.660	
	Этан	Этан		2.00	-88.580	30.070	0.340	15.035	0.870	
	Пропан	Пропан		3.00	-42.080	44.097	0.500	14.700	1.000	
	Пропен	Пропен		3.00	-48.000	42.080	0.514	14.027	0.960	
	Изобутан	и-Бутан		4.00	-11.720	58.124	0.557	14.530		
	Бутен-1	Бутен-1		4.00	-6.250	56.110	0.595	14.027		
0	н-Бутан	н-Бутан		4.00	-0.500	58.124	0.579	14.530		
1	транс-Бутен-2	транс-Бутен-2		4.00	0.880	56.110	0.604	14.027		
2	2,2-ДМетил С3	2.2-ДМетил С3	и-Пентан	5.00	9.500	72.151	0.591	14.430		
3	цис-Бутен-2	цис-Бутен-2		4.00	3.720	56.110	0.621	14.027		
4	1,2-Бутадиен	1,2-Бутадиен		4.00	10.850	54.090	0.652	13.523		
5	3-Метилбутен-1	3-Метилбутен-1	и-Пентан	5.00	20.050	70.130	0.627	14.026		
5	01	01		5.00	23.000	70.130	0.630	14.026		
7	02	02		5.00	23.000	70.130	0.630	14.026		
8	Изопентан	и-Пентан	и-Пентан	5.00	27.840	72.151	0.620	14.430		
9	Пентен-1	Пентен-1		5.00	30.000	70.130	0.640	14.026		
0	2-Метилбутен-1	2-Метилбутен-1		5.00	31.150	70.130	0.650	14.026		
1	2-Метил-1,3-бутадиен	2-Метил-1,3-бутадиен		5.00	34.000	68.120	0.655	13.624		
	-	_								>

Рис 3. Таблица компонентов

Таблица компонентов включает в себя справочные данные о компонентах, которые предположительно могут содержатся в пробах анализируемых по СТО ТюменНИИгипрогаз 02-04-2009. В данном окне содержится две раздельные таблицы для газа дегазации и дегазированного конденсата. Данные в этих таблицах между собой не связаны (только имена компонентов). Переключение между этими таблицами осуществляется при помощи элемента управления в нижней части окна.

Данные в таблице могут быть отредактированы пользователем при необходимости. Для начала редактирования достаточно 2 раза щелкнуть левой кнопкой мышки (ЛКМ) по выбранной ячейке и ввести требуемое значение. Поле редактирования нажатие кнопки «ОК» сохранит внесенные изменения, нажатие же кнопки «Отмена» или закрытие окна отменит внесенные изменения.

Таблица содержит 2 поля для имени компонента — это требуется для сопоставления имен из хроматограммы с именами компонентов используемых внутри программы. Потому если в хроматограмме имена компонентов отличаются от имен в таблице программы, то достаточно изменить имя в поле «Имя компонента».

В таблице есть ячейки с прочерками из-за того что не для всех компонентов даны справочные значения в используемых нормативных документах и соответственно в них нет нужды. Но эти данные можно вписать при необходимости.

Последняя колонка (в каждой из таблиц) в таблице предназначена для градуировочных значений из паспорта смесей используемых для оперативного контроля (см. раздел 5).

Колонка «Группа» - предназначена для объединения компонентов в группы (см. раздел 4).

4. Группировка компонентов

Объединять компоненты в общие группы или фракции можно при помощи таблицы компонентов. В колонке «Группа» у группируемого компонента необходимо вписать название группы/фракции в которую он должен входить. Имя группы или фракции должно совпадать с именами компонентов программы, кроме того компонент имя которого выбрано для группы, так же должен быть добавлен в группу путем указания этой группы.

Для одного компонента могут быть указаны как группа так и фракция через запятую с пробелом (рис 4). В зависимости от метода разметки (компонентный или компонентно-фракционный) будет выбрано с чем компонент сгруппировать.

При группировке площадь группируемых компонентов будет просуммирована и представлена в виде одного компонента или фракции. Табличные значения в расчете будут применены соответствующие одноименному с группой компоненту.

При группировке, на текущий момент, есть ограничение - компоненты старше 45 градусов нельзя сгруппировать с компонентами имеющими температуру кипения ниже 45 градусов.

Группировка работает только для анализируемых проб, за исключением группового состава дегазированного конденсата, так-как в СТО ТюменНИИгипрогаз 02-04-2009 не предусмотрен перенос пиков куда либо: «Вариант Б. Индивидуально идентифицируют пики в диапазоне от С1 до н-С5. Определяется площадь пиков индивидуальных компонентов. Полезная площадь, соответствующая компонентам старше н-С5, размечается сразу на участки, соответствующие фракциям по числу атомов углерода в молекуле углеводородов. Причем границей фракции является минимум сигнала после выхода соответствующего н-парафина. Так последним пиком во фракции С6 является н-С6, во фракции С7 – н-С7, и так далее. »

Доба	Vлалить Vлалить все Открыть в ПО Имя прибора:						Настройка	Таблица
Koı	мпоненты							
Nō	Компонент	Имя компонента	Группа	ЧАУ	Ткип, ℃	ММ, г/моль	Плотность, г	к-пид
34	2,3-Пентадиен	2,3-Пентадиен		5.00	48.000	68.120	0.695	13.624
35	4-Метилпентен-1	4-Метилпентен-1		6.00	53.860	84.160	0.667	14.027
36	3-Метилпентен-1	3-Метилпентен-1		6.00	54.170	84.160	0.664	14.027
37	Цикло С5	Циклопентан	н-Гексан, F45-60	5.00	49.250	70.130	0.745	14.026
38	2,3-ДМетил С4	2,3-Диметилбутан		6.00	57.980	86.178	0.662	14.363
39	4-Метил-цис-пентен-2	4-Метил-цис-пентен-2		6.00	56.380	84.160	0.674	14.027
40	2,3-Диметилбутен-1	2,3-Диметилбутен-1		6.00	55.610	84.160	0.683	14.027
41	2-Метил С5	2-метилпентан		6.00	60.260	86.178	0.653	14.363
40	***			6.00	FO COO	04.460	0.074	44.007

Рис 4.

5. Открытие хроматограмм

Для работы с дополнительным расчетом 72, хроматограммы должны быть снабжены «маркерами» (помечены в соответствии с типом хроматограммы). Эти «маркеры» можно посмотреть/вписать в ПО Хромос; необходимые данные содержатся в паспорте хроматограммы. На рисунке 5 приведен пример заполненного паспорта.

Поле «Метод» должно содержать тип детектора и тип анализируемого вещества. Детекторы могут быть следующие:

- ПИД
- ДТП-1
- ДТП-2

Типы анализируемых сред:

- ГД или ГАЗ (газ дегазации)
- ДК (дегазированный конденсат)

Поле «Метод» заполняется автоматически при анализе в зависимости от выбранного метода, потому название метода должно включать в себя выше перечисленные «маркеры».

Поле «Проба» должно содержать тип хроматограммы. Типы хроматограмм:

- холостая
- градуировочная
- проба
- ОКП
- ОКЭ

 ${\rm OK\Pi}$ — это хроматограмма анализа исследуемой пробы используемая для проведения оперативного контроля.

OKЭ — это хроматограмма анализа эталонного образца используемого для оперативного контроля.

Для анализа ГД требуются следующие хроматограммы:

- «ГД ПИД Холостая» 1 шт.
- «ГД ПИД Проба» не менее 2 шт.
- «ГД ДТП-1 Проба» не менее 2 шт.
- «ГД ДТП-2 Проба» не менее 2 шт.

Для анализа ДК требуются следующие хроматограммы:

- «ДК ПИД Холостая» 1 шт.
- «ДК ПИД Градуировочная» 1 шт.
- «ДК ПИД Проба» не менее 2 шт.

Это наборы хроматограмм одного анализа. Программа позволяет провести предварительный анализ всего по 1 набору, но согласно СТО ТюменНИИгипрогаз 02-04-2009, для анализа требуется по 2 набора хроматограмм анализов ГД и ДК. Так же программа позволяет проводить

анализ более чем по двум наборам хроматограмм.

Хроматограммы типа ОКП и ОКЭ требуются исключительно для оперативного контроля.

Для проведения оперативного контроля с использованием эталонного образца паспортные данные на смесь следует ввести в таблицу компонентов. Открыть таблицу компонентов можно из главного окна программы нажатием кнопки «Таблица компонентов». Для паспортных данных отведены последние колонки таблицы (для ГД и ДК).

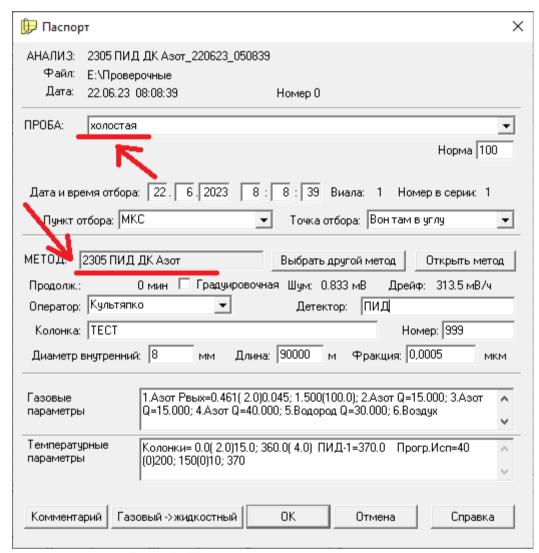


Рис. 5 Паспорт хроматограммы

6. Вкладка «Просмотр хроматограмм»

Данная вкладка позволяет наглядно увидеть результат вычитания холостой хроматограммы и результаты разметки на компоненты, группы, фракции.

Для отображения данных необходимо выбрать хроматограмму в выпадающем списке «**Отображаемая хроматограмма**». После выбора

хроматограммы на графике появится данные и станут доступны элементы управления для изменения отображаемых данных. На рисунке 6 изображена вкладка «Просмотр хроматограмм».

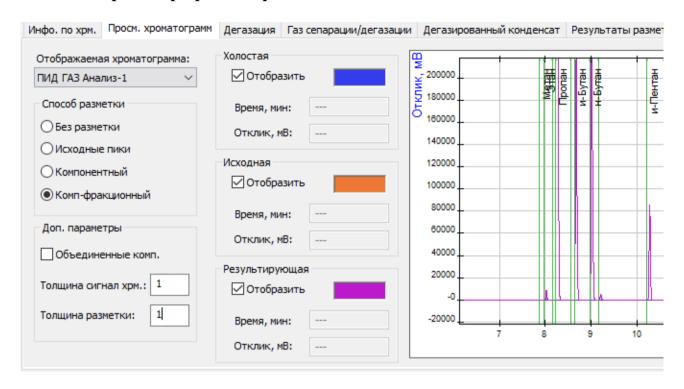


Рис. 6 Вкладка «Просмотр хроматограмм»

На вкладке расположены следующие элементы управления:

- Выпадающий список «Отображаемая хроматограмма» Задает хроматограмму которая будет отображена.
- Переключатель «Способ разметки» Позволяет выбрать отображаемую разметку хроматограммы.
- Наборы элементов «Холостая», «Исходная», «Результирующая» Управляют режимом отображения хроматограмм на графике. Исходная это выбранная анализируемая хроматограмма представленная в исходном состоянии (как в ПО Хромос). Результирующая это хроматограмма которая получается в результате вычитания холостой из исходной.
- Переключатель «Объединенные комп.» служит для отображения/скрытия компонентов которые были включены в состав других компонентов/групп/фракций. Данные компоненты будут размечены более темным цветом чем остальные. Так же к именам этих компонентов в скобках будет указано куда его площадь была перенесена.
- Поля ввода толщин изменяют толщину линий которыми будут нарисованы соответствующие названиям элементы.
- График служит для графического представления анализируемых данных.

Навигация внутри графика осуществляется при помощи мыши и клавиатуры:

- Вращение колесика мыши изменяет масштаб изображения;
- Вращение колесика + Shift перемещает по графику вверх/вниз;
- Вращение колесика + Ctrl перемещает по графику влево/вправо;
- Удержание колесика позволяет перемещаться по графику в произвольном направлении;
- Двойной щелчок ЛКМ сбрасывает масштаб на начальный;
- Удерживая ПКМ можно задать фрагмент хроматограммы для более детального рассмотрения.
 - * ЛКМ левая кнопка мыши
 - * ПКМ правая кнопка мыши

! Данная вкладка служит только для просмотра результатов работы программы.

7. Вкладка «Дегазация»

Вкладка «Дегазация» служит для ввода данных о процессе дегазации. В зависимости от выбранного метода для заполнения будут доступны разные поля ввода. Результат работы данной вкладки — это газовый фактор, который использует для объединения результатов расчета дегазированного конденсата и газа дегазации. Без заполнения полей ввода данной вкладки не будет производится результирующий расчет НЖУ (вкладка «Состав НЖУ»). Наименование полей ввода совпадает с наименованием параметров описываемых в СТО ТюменНИИгипрогаз 02-04-2009, раздел «Методика дегазации нестабильных жидких углеводородов».

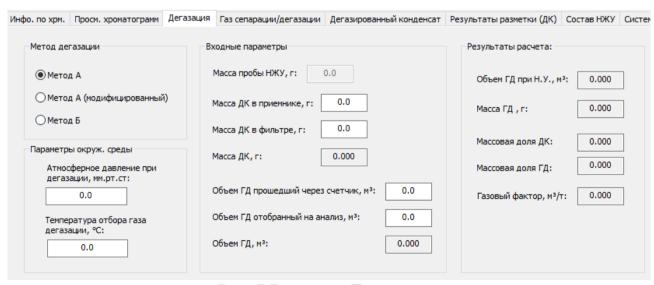


Рис. 7 Вкладка «Дегазация»

8. Обработка данных и методика расчета

Расчет и перерасчет в программе запускается автоматически при изменении настроек связанных непосредственно с расчетом или при добавлении/удалении хроматограмм из списка программы. В 5 разделе описано какие хроматограммы требуются для проведения расчета.

Расчет проводится по методике описанной в СТО ТюменНИИгипрогаз 02-04-2009, потому в данном разделе будут описаны только основные моменты связанные с реализацией методики в виде ПО.

!!! СТО ТюменНИИгипрогаз 02-04-2009 существует в как минимум в двух различающихся вариациях, где не совпадает нумерация формул и разделов. Это необходимо учитывать при прочтении руководства и работе с программой, так-как в них присутствуют ссылки на разделы/формулы/таблицы данного нормативного документа. Версию нормативного документа по которой писалось ПО можно скачать на интернет-странице посвященной расчету: http://kb.has.ru/soft:dop_raschjot_72

8.1 Дегазация

В формулах расчета газового фактора обнаружена ошибка (в имеющейся редакции), а именно не совершено приведение единиц измерения, что учтено в ПО и проведена соответствующая корректировка:

- В формулах где газовый фактор должен иметь размерность \mathbf{m}^3/\mathbf{T} , результирующее значение домножено на 10^6 , так как $\mathbf{V}\mathbf{r}\mathbf{J}$ имеет размерность \mathbf{m}^3 , а $\mathbf{m}\mathbf{g}\mathbf{k}$ \mathbf{r} и без домножения получится \mathbf{m}^3/\mathbf{r} .
- В формуле где газовый фактор должен иметь размерность **кг/т**, результирующее значение домножено на 10³, так как **тг**д и **т**дк имеют разность **г** и без домножения получится **г/г**.

До начала расчета из хроматограмм полученных на ПИД детекторе проводится вычитание хроматограммы холостого опыта. Вычитание производится таким образом что бы начальный ровный участок хроматограммы совместить с 0, то есть ручной корректировки сигнала хроматограммы холостого опыта не требуется. С результатом вычитания холостой хроматограммы можно ознакомится на вкладке «Просмотр хроматограммы» (раздел 6 данного руководства). Для ГД и ДК требуются отдельные хроматограммы холостого опыта!

8.2 Расчет газа дегазации (ГД)

При расчете ГД происходит сшивка результатов полученных на трех детекторах:

- ДТП для определения азота (N2) и кислорода (O2)
- ДТП для определения углекислого газа (СО2)

- ПИД для определения углеводородного состава

Сначала сшиваются данные с обоих ДТП. Для расчета коэффициента сшивки используются компоненты определяемые на обоих детекторах: метан и этан. Для сшивки достаточно присутствия любого из них на обеих хроматограммах полученных детекторов ДТП.

Далее происходит сшивка данных с ПИД детектора и результатов предыдущей сшивки. Для расчета коэффициента сшивки используются углеводородные компоненты присутствующие как на ПИД так и в результатах сшивки ДТП, после чего рассчитывается усредненный коэффициент и производится сшивка.

В случаи отсутствия компонентов по которым можно провести сшивку для расчета будет использована только хроматограмма ПИД и в результатах будут отсутствовать неуглеводородные компоненты.

В случаи если предполагается попадание воздуха в пробу при манипуляциях при подготовке пробы к анализу можно провести коррекцию состава анализируемой пробы. Для коррекции в настройках программы предусмотрены поля ввода для задания состава воздуха. Расчет коррекции проводится согласно СТО ТюменНИИгипрогаз 02-04-2009.

8.3 Разметка хроматограмм ПИД

При разметке хроматограмм ПИД на фракции/группы индивидуальные компоненты объединяются в общие группы/фракции, их площади суммируются, а для расчета используются параметры из таблицы соответствующие имени группы/фракции. В случаи если компонент по времени выхода попадает в «неправильную» фракцию/группу, то его площадь вычитается из этой фракции/группы и суммируется с заданной группой или фракцией. На вкладке «Просмотр хроматограммы» объединяемые компоненты выделяются более темным цветом и рядом с их именем указывается название фракции/группы в которую он был перенесен. Задать группы/фракции, в которые должны входить компоненты, можно в окне настройки компонентов (см. раздел 4).

Компоненты имеющие температуру кипения ниже 45°C не объединяются в группы с компонентами имеющими более высокую температуру кипения.

8.4 Расчет и табличные данные

В формулах пересчета площадей в концентрации используются коэффициенты чувствительности, а так же везде где используются разные справочные данные — они берутся из окна «Компоненты»! Все числовые поля данной таблицы являются редактируемыми, потому велечины которые встречаются в СТО ТюменНИИгипрогаз 02-04-2009 как пересчитываемые значения под конкретный состав пробы можно пересчитать опираясь на данный нормативный документ и вписать в программу для получения более точных данных.